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Abstract – Food security is a pressing global concern, increasingly intensified by the COVID-
19 pandemic and persistent economic instability. In Sri Lanka, rural regions are particularly 
vulnerable, necessitating targeted assessments of food availability and production. This study 
evaluates food security related to paddy cultivation in the Horana Divisional Secretariat 
Division (DSD) using Geographic Information Systems (GIS), remote sensing, and spatial 
interpolation techniques. The primary objective is to quantify rice production and assess its 
sufficiency against local food requirements, calculated based on caloric needs. Data were 
collected through stratified random sampling from five Grama Niladhari Divisions (GNDs): 
Uduwa North, Kahatapitiya, Meewanapalana East, Pannila, and Dambara. Spatial analysis, 
including Kriging interpolation, was employed to map rice availability and food deficits. 
Results show a total rice yield of 455,000 kg, compared to a requirement of 1,483,250 kg, 
revealing a substantial shortfall of 1,028,250 kg. Only Meewanapalana East achieves self-
sufficiency, while the remaining GNDs are food insecure. ArcGIS Online was used to publish 
and visualize these disparities through web GIS, enabling accessible and dynamic data 
presentation. The findings highlight severe food insecurity and stress the need for strategic 
interventions, such as improved agricultural practices, better distribution systems, and policy 
reforms. By integrating GIS, remote sensing, and interpolation methods, this study offers an 
innovative, spatially-driven approach to food security assessment, addressing a gap in existing 
literature that often overlooks the balance between local production and caloric demand. 
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1. Introduction 
Several social and economic problems have become more pressing as a result of the COVID-
19 epidemic.  Therefore, it can be claimed that during this period, food security has been the 
focus of global attention.  Food security has become a global priority in recent years due to 
rising economic instability, climate change, and conflict. In 2022, an estimated 735 million 
people or 9.2% of the global population, were undernourished, up from 618 million in 2019 
(FAO, 2023). This increase threatens health, productivity, and economic stability, especially 
in vulnerable regions. The World Food Programme (2023) reports that over 345 million people 
now face acute food insecurity. These challenges highlight the urgent need for coordinated 
global action to protect livelihoods and achieve Zero Hunger (SDG 2). According to FAO 
estimates, the global under-nutrition rate might increase from 83 million to 132 million people 
as a result of the COVID-19 pandemic. According to the 2013 Global Food Security Index 
(GFSI), Sri Lanka ranked 60th internationally with a score of 48.6, making it one of the most 
food-secure countries in South Asia at the time. However, more recent data from the 2022 
GFSI based on pre-pandemic indicators ranked Sri Lanka 79th out of 113 countries. This 
decline reflects growing concerns around food availability, affordability, quality, and safety. 
Despite its relatively strong historical ranking in the region, Sri Lanka has long struggled with 
underlying food insecurity, particularly child hunger. In 2009, 88% of households were 
reported to have adequate food. By contrast, more recent estimates suggest that fewer than 10% 
of households currently have sufficient food access (Sanderatne & De Alwis, 2014). This shift 
highlights the country’s worsening food security situation over the past decade. 

According to the 2016 Demographic and Health Survey, 17.3% of Sri Lankan children 
under five were stunted, 15.1% were wasted, and 20.5% were underweight (Department of 
Census and Statistics, 2016). The COVID-19 pandemic further worsened food insecurity 
through lockdowns and supply chain disruptions, despite efforts to maintain food distribution. 
These shocks highlighted the fragility of Sri Lanka’s food systems during crises. Sri Lanka's 
rich agricultural heritage, particularly in rice cultivation, makes it central to food security 
efforts (Hewapathirana & Nuskiya, 2024). Since 2021, the country has faced a severe food 
crisis, worsened by rising input costs and food inflation. In 2019, agriculture contributed 7% 
to GDP (Nuskiya, 2019), yet food price inflation has placed Sri Lanka among the top ten 
countries globally, with paddy cultivation remaining the backbone of the national food supply. 

Sri Lanka’s public debt rapidly became unsustainable due to prolonged fiscal deficits, a 
sweeping tax cut introduced in 2019, and the economic impacts of the COVID-19 pandemic 
(World Bank, 2022). By early 2022, the country was facing a full-scale balance-of-payments 
and debt crisis, exacerbated by sharp declines in foreign exchange earnings and global price 
shocks in food and energy (ADB, 2022). Surveys indicated that approximately 11% of 
households had lost all income, while 62% reported a reduction in income, severely limiting 
access to adequate and nutritious food (WFP, 2022). Compounding the crisis, a sudden 
nationwide ban on chemical fertiliser imports in April 2021, implemented without adequate 
planning, farmer training, or organic alternatives, resulted in a dramatic drop in agricultural 
productivity. Although the ban was lifted in November 2021, the damage was already done: 
the 2021/22 Maha season saw a 40–50% decline in paddy output (FAO, 2022). With increased 
production costs, only 24% (128,652 ha) of the usual 524,778 hectares were cultivated during 
the subsequent Yala season, as many farmers opted not to cultivate due to input cost inflation, 
particularly for paddy (Central Bank of Sri Lanka, 2022). Consequently, food prices surged, 
and widespread shortages were anticipated. 

In light of these challenges, this study seeks to address a critical knowledge and policy 
gap by assessing local food security in the context of paddy cultivation, specifically within the 
Horana Divisional Secretariat Division (DSD). Employing Geographic Information Systems 
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(GIS) and remote sensing techniques, this research spatially analyzes rice production and food 
needs across five selected Grama Niladhari Divisions (GNDs). The integration of GIS enables 
a data-driven evaluation of food availability and allows for the visualization of insecure areas 
through a Web GIS platform offering practical, actionable insights for planners and 
policymakers to target interventions more effectively. This approach not only contextualizes 
food insecurity at the sub-district level but also demonstrates how spatial technologies can 
support resilience and food system planning during times of crisis. 
 

2. Materials and Methods  
The methodology section describes the method of designing and data collection of Food 
Security Assessment for Paddy cultivation in Horana DSD. This presents the background of 
the Study area, research design, population and sampling, data collection methods, conceptual 
framework, and methods of data analysis of Horana Divisional Secretariat Division. 
Study Area 

Horana Divisional Secretariat is located in the Kalutara district in Western Province. It 
is a wet zonal divisional secretariat. Horana has a tropical climate. The Latitude of Horana is 
6.718°. The Longitude of Horana is 80.06°. Horana Divisional Secretariat, which is situated 
in the northern part of the Kalutara district of Western province, is close to the Colombo 
District in the north, Ingiriya Divisional Secretariat in the east, Madurawala Secretariat in the 
south and Bandaragama Divisional Secretariat in the west (Figure 1). Horana DSD, which 
belongs to Udagahapaththu and Kumbuke Paththu. RaigamKorale is a place of historical 
background and aesthetics. 

Figure 1. Study Area of Horana Divisional Secretariat Division 
 
Method of Data Collection  
This study uses both primary and secondary data sources to accomplish its goals.  The 
information gathered for the study by the researcher is known as primary data.  Primary 
data is typically highly accurate.  The data collection approach used in this study is a 
questionnaire survey.  The target groups are the households in the chosen GN that makeup 
the entire Horana DSD population.  Three techniques can be used to get primary data 
regarding food accessibility for householders in Horana DSD: questionnaires, interviews, 
and observation. 
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Sample area selected 
A field survey was conducted within the Horana Divisional Secretariat Division (DSD) to 
identify representative areas for assessing paddy-related food security. Five Grama Niladhari 
Divisions (GNDs): Uduwa North, Kahatapitiya, Meewanapalana, Pannila, and Dambara were 
selected using a stratified random sampling method. This approach ensured representation from 
both farming and non-farming households, based on shared demographic and agricultural 
characteristics. The stratification process was guided by local agricultural officers to enhance 
the reliability and relevance of sample selection. 
        Out of a total population of 2,249 households across the selected GNDs, a sample size of 
99 households (approximately 5%) was drawn. While this proportion is commonly used in 
exploratory studies, the sample corresponds to a confidence level of approximately 90% with 
a margin of error of ±9%, assuming a 50% response distribution. This level of precision is 
acceptable for preliminary assessments where resources or access constraints limit larger 
sampling. The number of households sampled in each GND was calculated using proportional 
allocation based on the total households in each division: 
 
Table 1 
Results on the sample population via the Stratified Sampling method 
                  
                 
           

Source: Field Survey and Author's Calculation 
 
Satellite Imagery 
This study acquired the crop and other land details availability through Satellite images 
using USGS Earth Explorer. The USGS Earth Explorer provides Satellite data like the 
Landsat series. This consists of several spectral bands. The USGS Earth Explorer gives 
some extra capabilities as downloading data over chronological timelines. The image 
quality is quite good because the cloud cover is very few (<5%) and only covers a small 
portion of the research area (Zahir et al., 2021). This study is based on data acquisition, 
images using 2018 and 2020 in the Landsat 8 series. Landsat 8 OLI was used for identifying 
the agricultural land, both paddy fields and other land, using multispectral classification 
methods. Landsat 8 OLI specifications are aligned with the research purpose. The OLI 
measures in the visible, near-infrared, and shortwave infrared portions (VNIR, NIR, and 
SWIR) of the spectrum. The TIRS measures land surface temperature in two thermal bands 
with a new technology that applies quantum physics to detect heat. Landsat 8 images have 
15-meter panchromatic and 30-meter multi-spectral spatial resolutions along a 185 km 
(115 mi) swath.              
 

Landsat 8 contains eleven spectral bands, including pan, Cirrus, and thermal (TIR) 
bands (Table 2). Landsat 8 mainly carries two sensors. The Operational Land Imager 

GN Division No. of Households Formula Samples 
Uduwa North 586 (586/2249)*99 26 
Kahatapitiya 481 (481/2249)*99 21 
Meewanapalana  252 (252/2249)*99 11 
Pannila 430 (430/2249)*99 19 
Dambara 500 (500/2249)*99 22 
Total 2249      99 
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sensor and the Thermal Infrared Sensor. OLI captures data with improved radiometric 
precision over a 12-bit dynamic range, which improves the overall signal-to-noise ratio.  
 
Table 2 
Landsat 8 Specification 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Also, a second objective to reach the data depends on pilot survey data using the 
Questionnaire method for the food security assessment process and acquiring data over the 
agrarian centre to identify the rice production details in selected GN. So, this purpose is to 
follow both primary and secondary data in the study. The fourth objective of this study is to 
use ArcGIS online service to visualize a food security map. 

 
Methods of Data Analysis 
This study employed both qualitative and quantitative data analysis methods to assess food 
security concerning paddy cultivation across selected GNDs. Primary data were collected 
through field surveys, while secondary data included satellite imagery, statistical records, 
scholarly publications, and government datasets. The sample area was selected using the 
Stratified Random Sampling method to ensure a representative cross-section of both farming 
and non-farming households. 

Quantitative methods were applied to analyze rice production, household food 
requirements, and spatial patterns using GIS and remote sensing tools. Satellite data were 
obtained from Landsat 8 imagery, and image processing was conducted using supervised 
classification and Normalized Difference Vegetation Index (NDVI) analysis to map vegetation 
health and potential crop productivity.  

To ensure the accuracy of satellite classifications, a ground truthing process was carried 
out using GPS data collected from the field. These ground control points were used to validate 
classified outputs and assess classification accuracy. An accuracy assessment was performed 
using a confusion matrix, from which overall accuracy and the Kappa coefficient were 
calculated to evaluate the reliability of the remote sensing results. 

Additionally, spatial analysis methods such as the Kriging interpolation technique were 
used to estimate food availability based on rice production data from Agrarian Service Centres. 

Sensor Band 
Number 

Wavelength 
µm 

Resolution Sensor 

Operatio
nal Land 
Imager 
(OLI 

1 0.433–0.453 30 m Visible (Coastal aerosol) 
2 0.450–0.515 30 m Visible (Blue) 
3 0.525–0.600 30 m Visible (Green) 
4 0.630–0.680 30 m Visible Red (Red) 
5 0.845–0.885 30 m Near Infrared 
6 1.560–1.660 30 m SWIR 1 
7 2.100–2.300 30 m SWIR 2 

Thermal 
Infra-red 
Sensor 
(TIRS) 

8 0.500–0.680 15 m Panchromatic 
9 1.360–1.390 30 m Cirrus 
10 10.6-11.2 100 m TIRS 1 (Thermal 

Infrared) 
11 11.5-12.5 100 m TIRS 1 (Thermal 

Infrared) 
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These spatial estimates were visualized using ArcGIS Online, facilitating the development of 
an interactive Web GIS platform to communicate food security patterns across the study area. 
 

Results & Discussion 
Analysis of Paddy availability  
This way select the Horana DSD area to be shown on the paddy availability map. Thus 
achieve the first objective, the Supervised Classification and NDVI methods follow for 
implementation (Ayoob et al., 2019). Therefore, Landsat 8 satellite Images in 2018 and 
2021 are used for the mapping process to create Paddy availability maps. Firstly, Figure 2 
uses Landsat 8 in 2018 and 2021 satellite images for identifying the agricultural lands and 
other lands using multispectral classification methods in the study area, respectively. The 
Landsat series is suitable for identifying vegetation types on Land surfaces. Hence, land 
use cover change comparison is important to identify via a map of vegetation and non-
vegetation using spatial analysis, compared with the 2018 and 2012 land patterns. This 
method follows the image classification method of supervised classification. This row of 
satellites contains 11 bands. Thus, recognising land category through satellite image in 
both years initially needs to be converted to a single band using composite bands in the 
Raster processing tool. 

Thereby, following the supervised classification method via the image classification 
tool. This method involves the use of training areas to represent surficial units to be 
classified. Initially, the study area was extracted by mask and assigned the pixel in land use 
using the draw polygon tool. Before the process begins divided into five classes: water 
bodies, Built-up, Agriculture, Forests, and barren land. After assigning pixels in the precise 
area by deciding classes for both years in separate Landsat 8 bands (Figure 2). In addition, 
generate the signature file to create the map in maximum likelihood classification. When 
generating a map, look at the surrounding individual pixels to remove them using the 
majority filter.  

 
Figure 2. Classified area of Horana DSD in 2018 
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Figure 2 displays the outcomes of supervised classification on a categorised image 
from 2018.  Across the 111.27 sq km, there was 10.89 sq km of built-up area, 5.29 sq km 
of forest, and 93.27 sq km of agricultural land.  As a result, the results also indicated that 
the area had the bulk of the vegetation.  This makes it possible to identify, for example, the 
distribution of agricultural lands within the built-up region.   

Figure 3. Classified area of Horana DSD in 2021 
 

The outcomes of supervised classification on classed photos in 2021 are shown in 
Figure 3.  Built-up area was 25.01 sq km, agricultural area was 58.79 sq km, forest was 
15.49 square kilometres, barren terrain was 0.05 sq km, and water bodies were 11.93 sq 
km out of the 111.27 sq km.  Importantly, changes in the land use mix between 2018 and 
2021 can be found by comparing the land classes in those years.  According to this, there 
was less agricultural land in 2021 than in 2018. The percentage of agricultural land was 
reduced by 30.99% in 2018.  growth in built-up land in 2021.  In 2018, 12.68% was 
converted to built-up land.  Additionally, there was a 0.05% increase in Barren land in 
2021.  In 2018, the difference was 0.04.  These figures for the two years demonstrate that 
there were more variations in land type conversion in 2021 than in 2018. 
NDVI Analysis for Identified Paddy Lands 

NDVI is used to identify vegetation or non-vegetation lands through pixels the range of 
land values depends on existing publications such as research experience. This research follows 
a range of greenish to identify paddy lands (Table 2). 
Table 3 
Greenness level classification of the plant 
 
 
 
 
 
 
 
 
 

Class NDVI value Level greenish / land cover conditions 

1 <-0.03 The land is not vegetated 

2 -0.03 ˗ 0.15 The greenery is very low 

3 0.15 ˗ 0.25 low greenish 

4 0.26 ˗ 0.35 The greenery was 
5 0.36 ˗ 0.61 high greenery 

Source: Wahyunto et al. (2003) 
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The NDVI is highly useful in detecting the surface features of the visible areas of 
paddy lands. The vegetation index is useful for measuring vegetation greenness values 
(Bhandari et al., 2012). NDVI, which produces a plant greenness level 5 class for identifying 
vegetation. This can be useful for highlighting the live green paddy land and the abandoned 
paddy land. Probably, Landsat 8 images are used in the process of NDVI. The bands of 5 
and 4 in NIR and Red bands in 30m. The corresponding NDVI formulation is:   
 
𝑁𝐷𝑉𝐼 = 	 (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑) ∶ 	 (𝜌𝑁𝐼𝑅	 + 	𝜌𝑅𝑒𝑑)                           (1) 
 
And by applying bands into the formula shown below: 
 
In Landsat 8,  
𝑁𝐷𝑉𝐼	 = 	 (𝐵𝑎𝑛𝑑	5	 − 	𝐵𝑎𝑛𝑑	4)	/	(𝐵𝑎𝑛𝑑	5	 + 	𝐵𝑎𝑛𝑑	4)           (2) 
 

The value of greenery levels is shown in Figure 4 as follows: high green at 26.19 sq 
km, very low green at 3.16 sq km, green at 55.29 sq km, and low greenish at 26.21 sq km.  
Depending on the water locations, there is extremely little vegetation.  Low greenish areas 
were either shrublands or bare land.  The greenery was thought to be abandoned paddy or 
other crops.  High greenery is seen as a healthy level of vegetation.  Similarly, swaths of 
verdant, living paddy fields are seen.  Determine which paddy field has other crops that rely 
on a water source.  The area's water level is 11.81 sq km.  The margin paddy area in 2018 
determines this. 

Figure 4. Land class with greenery levels in 2018 
 

Greenery levels in 2021 were as follows: high green was 58.64 sq km, green was 
24.53 sq km, low greenish was 19.45 sq km, and very low green was 8.6 sq km, as shown 
in Figure 4.  Depending on the photograph, which shows water and some problems with 
cloud cover, there is very little flora.  Low greenish was a settlement or a desolate area.  In 
such observable regions of vibrant, green paddy fields, high greenery is regarded as the 
vegetation level. 
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Based on the findings from 2018 and 2021, this research most likely also 
demonstrates that the paddy area's NDVI minimum and maximum values are lower than 
the study site's NDVI in green level in 2018.  Compared to 2018, the green level was higher 
in 2021.  Accordingly, there will be more live paddy available in 2021 than in 2018.  Band 
4 is used to identify vegetated land, open land, and vegetation that is less able to reflect 
drought conditions. This is because the water will cover the lowest NDVI values, while the 
vegetative phase in rice fields has NDVI values lower than the forest cover. Additionally, 
Band 5 will reflect the higher spectral dry plant and is sensitive to the plant's water content.  
Paddy fields look to be significantly different from places with an abundance of paddy, as 
indicated by the green hue that the Landsat NDVI statistical value gives.  The NDVI value 
ranges from low to high during the vegetative phase, whereas it would be extremely low 
during the water phase.  Consequently, the vegetative NDVI is higher than the vegetative 
paddy NDVI.  If the cover is left open, the negative NDVI vegetation cover will drop to its 
lowest NDVI.  The availability of live paddy will be determined in 2021 based on these 
factors. 

Figure 5. Land class with greenery levels in 2021 
 

Analyse the Food Security  
This section addresses the second objective of the study: to assess food security related to 
paddy cultivation in the selected Grama Niladhari Divisions (GNDs) within Horana DSD. 
The analysis combines primary survey data, field observations, and secondary data from 
agrarian records. The five GNDs selected: Uduwa North, Kahatapitiya, Meewanapalana 
East, Pannila, and Dambara were chosen using stratified random sampling based on the 
presence of active agricultural communities. To estimate food needs, the population’s 
caloric requirements were calculated using the standard of 2,100 kilocalories per person 
per day, as recommended by the Central Statistics Agency (2021). The following formula 
was applied: 

 
𝐹𝑜𝑜𝑑	𝑛𝑒𝑒𝑑𝑠/𝑦𝑒𝑎𝑟	(𝑘𝑐𝑎𝑙) 	= 	𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 × 	2,100	𝑘𝑐𝑎𝑙/𝑑𝑎𝑦	 × 	365	𝑑𝑎𝑦𝑠    (3)          
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These calorie needs were then converted into rice equivalents using an average 
annual per capita rice consumption of 107 kg, as reported by the Department of Agriculture 
(2021). The resulting food needs in kilograms (kg) for each GND are shown in Table 4. 
 
Table 4. 
Food needs in selected GNDs 
 

GND Population Annual Food 
Needs (kcal) 

Annual Food Needs 
(kg) 

Uduwa North 2,012 1,542,198,000 342,040 
Kahatapitiya 1,806 1,384,299,000 307,020 
Meewanapalana E. 962 737,373,000 163,540 
Pannila 1,950 1,494,675,000 331,500 
Dambara 1,995 1,529,167,500 339,150 
Total 8,725 6,687,712,500 1,483,250 

 
Source: Author's calculations using Department of Agriculture data (2021) 

 
To assess food security, actual rice production data (in kilograms) for each GND 

were obtained from the local Agrarian Services Center. The food security (FS) status was 
determined by comparing rice production with calculated food needs, using the following 
formula: 
 
𝐹𝑆	 = 	𝑅𝑖𝑐𝑒	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	(𝑘𝑔) 	− 	𝐹𝑜𝑜𝑑	𝑁𝑒𝑒𝑑𝑠	(𝑘𝑔)      (4) 

                          
Table 5. 
Food Security Status of Selected GNDs (2021) 
 

GND Population Food 
Needs 
(kg) 

Rice 
Production 

(kg) 

Surplus/Deficit 
(kg) 

Status 

Uduwa North 2,012 342,040 25,800 –316,240 Insecure 
Kahatapitiya 1,806 307,020 164,900 –142,120 Insecure 
Meewanapala
na E. 

962 163,540 194,650 +31,110 Secure 

Pannila 1,950 331,500 29,750 –301,750 Insecure 
Dambara 1,995 339,150 39,900 –299,250 Insecure 
Total 8,725 1,483,250 455,000 –1,028,250 Insecure 

 
Source: Agrarian Services Center & Field Data, 2021 

 
The food security analysis reveals a severe rice production deficit in four out of five 

GNDs. While the total annual food requirement for the study population is 1,483,250 kg, 
the actual rice production in 2021 was only 455,000 kg, resulting in a deficit of 1,028,250 
kg. Only Meewanapalana East achieved a surplus of 31,110 kg, making it the only food-
secure GND in the study. In contrast, Uduwa North, with a population of 2,012, showed 
the highest food gap (–316,240 kg), followed closely by Pannila and Dambara, with deficits 
exceeding 299,000 kg each. 
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These significant shortfalls indicate that local production is insufficient to meet even 

basic caloric needs, making these areas highly vulnerable to food insecurity. The situation 
is further exacerbated by rising food prices, reduced access to fertilizer, and increased 
cultivation costs, all of which were major factors in 2021. The findings emphasize the 
urgent need for targeted interventions, including productivity improvements, better 
resource allocation, and food distribution planning. The spatial distribution of secure and 
insecure GNDs is further visualized using interpolation methods in GIS (see Figure 6), 
allowing policymakers to prioritize interventions geographically.  

Figure 6. Map of Food Insecurity 
 

Publish a WebGIS map for food availability 
As part of the fourth specific objective, a Web GIS platform was developed to visualize 
food availability and security status across the selected Grama Niladhari Divisions (GNDs) 
in Horana DSD. This interactive map was created using ArcGIS Online, incorporating food 
production, consumption needs, and spatial patterns derived from earlier analyses. The 
geospatial data were prepared in shapefile format and projected in the WGS 1984 
coordinate system, in accordance with ArcGIS Online’s compatibility requirements (Löwe 
et al., 2022). Rather than serving as a purely technical output, the Web GIS map was 
designed with practical usability in mind, aiming to support local government officers, 
agrarian planners, and development stakeholders in identifying food-insecure areas. 
Through visualizing the rice production-to-need ratios, the map provides an intuitive, 
spatial decision-support tool that can inform targeted interventions such as input subsidies, 
cultivation planning, or food assistance distribution. 

The map was initially presented to a group of local agricultural officers and 
administrative personnel from the Divisional Secretariat, who provided positive feedback 
on its clarity and usability. However, some participants suggested enhancements such as 
the inclusion of real-time crop monitoring and seasonal forecasting layers, which are being 
considered for future development. Currently, the Web GIS map is a static publication, 
reflecting data from the 2021/22 Maha season. Future iterations may incorporate dynamic 
updating mechanisms using live data feeds from agrarian centers and satellite-derived 
NDVI layers to support near-real-time monitoring of crop health and food security trends. 
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The publishing process of the online server. Before you publish layers to the portal 
need an ArcGIS online account. Then add the ArcGIS server in the sign-in. Then, to 
publish to an ArcGIS Enterprise portal, we must add the portal in the ArcGIS 
Administrator. ArcGIS Desktop connects to ArcGIS Online by default. The account you 
use to sign in must have privileges to publish hosted layers. General information that which 
layer name can be inserted in the summary description of your hosted web layer and tags. 
Select the capabilities setting using the tick on the KML option. Next, validate the data 
using the analysis tab. If errors don’t occur next step is to publish the map. When displaying 
the dialogue box, copy data to the server by selecting the shape file layers on Food Security. 
Publish to create the hosted web layer item in your portal. When connected to the portal, 
it will see the web layer on the My Content tab of the Contents page. Then need to open 
the web map layer as Figure 13. The published food security layer can be visible via an 
open map viewer. Especially, the ArcGIS online portal facilitates changing background 
layers with customised changes in base maps, adjusting colour scheme and Symbology, 
and choosing an attribute to show, or keep the default as Show location only. And also 
facilitates changing the pop-up box that wants to shows details by clicking on the polygon 
layer. 

Figure 7. (a) Map of Food availability in the Web map layer; (b) Secure Status of food 
security in the Web map layer 

Figure 8. Insecure Status of food security in the Web map layer 
 

Figures 7 and 8 show the status of food availability. The web map layer provides to 
display their details by the pop-up box by adding a point layer that needs a polygon to 

(a) (b) 
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visualise. Colours can be changed by the user as well as symbology. This web map layer 
shows food secure and Insecure GNDs to identify food availability areas in Horana GNDs.  
 

3. Conclusions and Recommendations  
Food security remains a pressing issue in both developed and developing countries, including 
Sri Lanka, where inflation, climate variability, and insufficient agricultural production 
significantly contribute to food insecurity. This study focused on assessing food security in the 
Horana Divisional Secretariat Division (DSD) through the integration of Geographic 
Information Systems (GIS), remote sensing, and spatial analysis techniques. Results indicated 
a 30.99% reduction in agricultural land between 2018 and 2021, largely due to urban expansion 
and land degradation. Although the Normalized Difference Vegetation Index (NDVI) showed 
relatively higher green cover in 2021, suggesting healthier vegetation, this did not correspond 
to increased rice production. This apparent contradiction likely stems from factors such as 
fertilizer bans, rising production costs, and suboptimal farming practices, which affect crop 
yield despite vegetation presence. Therefore, NDVI alone is insufficient to assess agricultural 
productivity without corroborating field-level data and socio-economic considerations. 

The study revealed that total rice production in the selected study area amounted to 
455,000 kilograms, significantly below the estimated food requirement of approximately 
1,483,250 kilograms, indicating a deficit of nearly 1,028,250 kilograms. Among the five Grama 
Niladhari Divisions (GNDs) examined, only Meewanapalana East was classified as food 
secure, highlighting the urgency to address food shortages in other areas. The development and 
deployment of a web-based GIS platform effectively mapped the spatial distribution of food 
security status, offering a valuable tool for local authorities to monitor and manage food 
availability in real time. To address these challenges, this study recommends several targeted 
policies and practical interventions. At the policy level, protecting agricultural land through 
land-use zoning regulations is crucial to prevent further conversion of farmland for non-
agricultural uses. Reinstating targeted subsidies for key agricultural inputs, such as fertilizers 
and certified seeds, coupled with soil testing, can improve crop productivity and ensure 
efficient input use. Additionally, integrating climate-resilient agricultural strategies such as 
drought-tolerant rice varieties and water-saving irrigation methods into regional agricultural 
planning is necessary to mitigate the impacts of climate change. Establishing frameworks that 
institutionalize real-time crop monitoring using GIS and remote sensing will enhance early 
warning and decision-making capacities. 

On the technical front, promoting crop rotation practices that include nitrogen-fixing 
legumes, such as soybeans, can improve soil health and reduce fertilizer dependency. 
Expanding access to soil health diagnostics through mobile testing and farmer education will 
further optimize fertilizer application and boost yields. Socio-economically, enhancing market 
access and stabilizing prices through cooperatives and minimum support prices will empower 
smallholder farmers. Strengthening household-level food storage and processing capabilities 
can reduce post-harvest losses and improve food availability throughout the year. Moreover, 
social safety nets like cash-for-work or food-for-work programs, especially during lean periods, 
can alleviate immediate food insecurity. Facilitating community-based seasonal planning 
platforms will improve synchronization of production and demand cycles, enhancing 
affordability and availability. 

This study’s findings and recommendations align with the Food and Agriculture 
Organization’s (FAO) four pillars of food security: availability, access, utilization, and 
stability. By quantifying rice production deficits, identifying socio-economic barriers, and 
proposing spatially driven monitoring tools, this research contributes to comprehensive food 
security planning at the local level. Strengthening local food systems through the integration 
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of geospatial technologies and targeted policies is essential for building resilience against 
future shocks, whether climatic, economic, or political. The approach presented here offers a 
replicable framework for sub-national food security assessment and management that can 
support Sri Lanka’s efforts toward achieving sustainable food security. 
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